If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+58x+13=0
a = 7; b = 58; c = +13;
Δ = b2-4ac
Δ = 582-4·7·13
Δ = 3000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3000}=\sqrt{100*30}=\sqrt{100}*\sqrt{30}=10\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(58)-10\sqrt{30}}{2*7}=\frac{-58-10\sqrt{30}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(58)+10\sqrt{30}}{2*7}=\frac{-58+10\sqrt{30}}{14} $
| -9-9n=-10n | | 9z+7=7z-5 | | -17.5(-35+3)=x | | -4v=-9-5v | | -w=6-2w | | 7-2s=5s | | p=-4p-10 | | 3x-7=11x-3 | | (10+-15y)+(8-y)*(-4)=0 | | 4y-10+42=180 | | 36(6x-2)=30(5x+13) | | (8-y)*(-4)=0 | | a=5;9a+3 | | b=3(4)(-2) | | 5x+11=2(2x+1)+7 | | 588=x+11(3x-7) | | 5(x+5)-10=3x+11 | | 2(4x-5)+5=19 | | b=-30-15 | | -7-8x=15+3x | | -15-(-8)=c | | 49-14x=63 | | 4(4x-2)-6=-46 | | r=-5+3+15 | | 3-10x=15x-22 | | 2x+4+x+8=4x-4 | | 10x-24=17x-14 | | (7/8)^x=0.5 | | 5x+6x-2x=3(x+2) | | 4y(2y+1)=3y | | 11+(4)=g | | F(-10)=5x-12 |